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Abstract

This paper describes the semi-formal semantics and a run-time monitoring tech-
nique for TLCharts, a visual specification language that combines the visual and
intuitive appeal of non-deterministic Harel Statecharts with formal specifications
written in Linear-time (Metric) Temporal Logic (LTL and MTL). We describe
an automata-theoretic semantics for non-deterministic statecharts with negation
and state overlapping and extend it to cater for temporally annotated transitions,
thereby providing a simple automata theoretic semantics for TLCharts. We also
describe a run-time monitoring technique for TLCharts.
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1 Introduction

Temporal Logic is a special branch of modal logic that investigates the no-
tion of time and order. Linear-time Temporal Logic (LTL) is an extension
of propositional logic where, in addition to the well-known propositional logic
operators, there are four future-time operators (♦-Eventually, 2-Always, U -
Until, O-Next) and four dual-past time operators. Pnueli [Pn] suggested using
LTL for reasoning about concurrent programs. Since then, several researchers
have used LTL to state and measure correctness of concurrent programs, pro-
tocols, and hardware (e.g., [MP, Pn]). Metric Temporal Logic (MTL) was
suggested by Chang, Pnueli, and Manna as a vehicle for the verification of
real time systems [CPM]. MTL extends LTL by supporting the specification
of relative-time and real-time constraints. With MTL, all four LTL future-
time operators can be characterized by relative-time and real-time constraints,
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specifying the duration of the temporal operator. Temporal Logic with Time
Series constraints (TLS) was suggested by Drusinsky [D2] as an extension
of MTL which enables temporal specifications that assert about time-series
properties such as stability, monotonicity, and min-max values.

Ever since first published [Ha], and later incorporated into the OMT
methodology and UML standard, Harel statecharts have been described in
numerous papers and books (e.g., [Br, RB]). Statecharts extend finite state
diagrams with hierarchy (state nesting), concurrence, and history states. Harel
Statecharts are typically used for design analysis and implementation; for ex-
ample, Brugge suggests using statecharts in the design analysis phase of an
object oriented UML based design methodology [Br]. A formal semantics of
Harel statecharts has been suggested in [HN]. This paper uses new a automata
theoretic semantics for statecharts first suggested in [D1]. The semantics lends
itself to the inherently non-deterministic semantics required by the TLCharts
formalism. It also supports statecharts and TLCharts with overlapping states.

Timed automata extend non-deterministic automata with timed transi-
tions, similar to the timeout event mechanism of Harel statecharts [AD]. With
TLCharts MTL conditions can be used in addition to timeout events. This is
an important feature because the LTL until operator can neither be simulated
in a trivial way by timed automata, nor can nesting of temporal operators.

Sowmya and Ramesh suggested in [SR] to use temporal logic assertions
with statechart qualities by applying temporal logic in a hierarchical manner;
the resulting language is a new hierarchical form of the textual temporal logic
formalism. In comparison, our hybrid language is a true automata-theoretic
hybrid with a unified syntax and semantics; the resulting language is highly
visual and familiar, with special LTL annotation of some transitions.

Enciso et-al. [E] suggest LNint-e, a logic that enables statecharts to tem-
poral logic transforms using a new temporal logic which combines points and
intervals to specify the dynamic behavior of programs. In contrast, our sug-
gested language maintains, for the most part, the syntax and semantics of
both languages and retains the visual appeal of statecharts.

The Mathworks’ Stateflow statechart tool has a so-called temporal logic
extension. Stateflow events and conditions can use the four operators after,
before, at, and every. These four operators are essentially extended versions
of the LTL eventuality operator. Most notably, the Stateflow formalism lacks
non-determinism, negation, and an operator equivalent to LTL’s Until opera-
tor.

Non-deterministic Finite Automate (NFA) are sometimes used as a spec-
ification language [HU]. The TLChart formalism suggested in this paper ex-
tends the NFA formalism in two ways: it suggests using non-deterministic
statecharts instead of flat and sequential NFA formalism, and supports the
annotation of transitions with LTL, MTL and TLS conditions.

Existing commercial tools such as the Temporal Rover [D5] provide support
for LTL and MTL assertion checking within statechart states. Such a tool
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synergy is less effective than a unified formalism suggested in this paper in
that it does not provide semantics for the hybrid language and does not enable
unrestricted hybrid representations, such as the statecharts transition function
using MTL guards.

In this paper we describe TLCharts, a formalism that visually and intu-
itively resembles Harel statecharts while enabling temporal-logic conditioned
transitions; similar semantics supports a hybrid of statecharts and extended
regular expressions. Such hybrids are useful for the specifying abstract non-
deterministic temporal properties inside a statechart specification.

Our primary motivation for developing the TLCharts specification lan-
guage is the concern for effective, early phase specifications, namely system
specification that is performed before system design and implementation. This
is different than the most prevalent application of formal specifications, which
is mostly concerned with the specification of correctness properties for a given,
existing, system.

2 An Entry System Control Example

The entry example consists of the following four conditions: (system) begin,
(system) end, keyPressed, doorOpen (where doorClosed = ¬doorOpen) and
alarm. A particular requirement of interest is:

R: a session is the interval between a begin and an end-condition. For
every such session a keyPressed must be repeatedly sensed within two-minute
intervals or else an alarm must sound within 10 seconds until keyPressed is
sensed. Also according to this specification, once the alarm sounds then the
assertion has succeeded and no more alarms are permitted. The end-condition
is defined to be true whenever there is an interval which starts with the door
closed followed by an end being repeatedly sensed until a later time when
begin is sensed.

We refer the reader to the infusion pump example of [D3] which consists of
a requirement similar to R. This reference also contains an LTL/MTL spec-
ification for the infusion pump requirement and analyzes subtle specification
errors that result from the use of linear time temporal logic. A deterministic
Harel statechart specification of requirement R is illustrated in Fig. 1. The
discussion in [D3] compares the accuracy of the statechart of Fig. 1 with that
of the TLChart of Fig. 2.

Fig. 1 and Fig. 2 are both legal TLCharts, i.e. Harel statecharts are
a special case of TLCharts, and so are LTL and MTL assertions (using a
diagram with a single state and transitions annotated with LTL).

TLChart extend Harel statecharts in the following ways:

(i) Some transitions are annotated with LTL, MTL or TLS conditions, such
as the transition labeled alarm U keyPressed in Fig. 2.

(ii) TLChart’s support non-deterministic behavior.
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(iii) TLCharts flavor of non-determinism incorporates the specification of
both good and bad computations with ambiguities resolved via a priority-
based resolution scheme. From an automata theoretic perspective this
amounts to existential non-determinism with negation.

(iv) TLCharts can have overlapping states.

Fig. 1. Deterministic Harel statechart specification for requirement R. A Harel
statechart is by definition also a TLChart.

Fig. 2. TLChart specification for requirement R1 (all states other than Error are
good states; all states with no specified priority have default, i.e., lowest, priority).
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A TLChart input string represents a sequence of combinations of stimuli
and corresponding system responses; for example, a sequence may contain
keyPressed - generated by the environment, as well as alarm - a system gen-
erated response. The TLChart of Fig. 2 describes legal (accepted) and illegal
(rejected) sequences. From a verification standpoint, a rejected string means
that the systems behavior does not comply with the specification, typically
due to an incorrect system reaction to the input stimuli. This application of
diagrams to specification rather than programming and design explains the
existence of a sink state (the Error state), which does not typically exist in a
design phase statechart.

3 TLCharts: Syntax and Semantics

3.1 Syntax

In this paper we consider Harel statecharts as first described in [Ha], including
state hierarchy, concurrence, and history states. Hence, no state overlapping
is permitted; this assumption will be changed in the next section. For simplic-
ity, we assume that statechart transitions are annotated with conditions and
no events, although we expect TLChart to be used and applied with events
and conditions, much like UML statecharts. We use the automata-theory-
oriented notation where transitions are annotated with symbols from a finite
input alphabet Σ. A practical generalization of the automata model is to use
the power set of Σ as the actual input alphabet; this generalization enables
multiple simultaneous input channels to the statechart device. Consequently,
transition labels are subsets of Σ, where a transition labeled label means in-
formally that all symbols s∈label must be concurrently present on the input
tape for the transition to be traversed.

TLChart transitions are annotated with one or both of the following types
of conditions: propositional and temporal. Propositional conditions are subsets
of Σ. Temporal conditions include all legal LTL and MTL formulae. In Fig.
2 temporal conditions are represented using curly braces. Hence [end {end U
begin}] represents the propositional condition end and the temporal condition
end U begin. When using (extended) regular expressions instead of LTL the
equivalent condition is [end {end* begin}].

A TLChart without state overlapping induces an and/or state tree as illus-
trated in Fig. 3. A TLChart with overlapping states, such as the TLChart of
Fig. 4, induces an and/or state Directed Acyclic Graph (DAG), as illustrated
in Fig. 5.

3.2 Semantics without Temporal Conditions

The TLChart formalism specifies requirements using formal languages. The
semantics of a TLChart is interlingua-based, using an Equivalent Non-Deterministic
Automaton (ENFA) [D1, HU]. Once defined in terms of its ENFA, a TLChart
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Fig. 3. State and/or tree for Fig. 2.

defines correctness properties in a manner that resembles formal logic speci-
fication, such as temporal logic specification. It observes a given input tape
and decides whether this tape is acceptable or not. In real life terms the in-
put tape corresponds to a combined sequence of inputs to-, and manifested
outputs from-, a given system.

Definition 3.1 A configuration C is a subset of the TLChart state set in
which states of C are pairwise orthogonal, i.e., if for every pair r, s ∈ C,

the least common ancestor of randsin the state tree is an and state.

Definition 3.2 A configuration C is maximal if it is not a subset of any other
configuration with a larger cardinality.

For example, in Fig. 2, the configuration {Wait-For-KeyPressed} is not
maximal while {Wait-For-KeyPressed, Closed} and {Wait-For-KeyPressed,
Open} are maximal. Note that state configurations do not, in general, contain
information about corresponding superstates, such as Wait-For-KeyPressed
and Closed residing under State-2, which in turn resides under State-1. This
information is not necessary because, absent state overlapping, state hierarchy
is unique. However, we will change this notation when we describe TLCharts
with overlapping states.

The ENFA’s state set consists of all possible maximal configurations. In-
tuitively, this set represents a Cartesian product of state sets of concurrent
TLChart threads. We denote a TLChart state within a configuration C as a
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constituent of C.

As a preliminary step, before we describe the ENFA’s transition relation,
note that we can replace statechart and TLChart hierarchical transitions, such
as State-1→Init in Fig. 2, with concurrence, using a new concurrent thread
with one inner state, e.g. State-1a. The hierarchical transition is then re-
placed with the transition State-1a →Init. Also, in the following discussion
we represent TLChart transitions as annotated binary relations over configu-
rations. For example, in Fig. 1, the hyper edged transition labeled begin is the
annotated relationship ({CLS, State-4}, {Init})begin and, in Fig. 2, the tran-
sition Closed → Init is represented by the annotated relationship ({Closed},
{Init})end,endUbegin.

For simplicity, we will first define consider TLCharts with no temporal
conditions

Definition 3.3 A global transition is an annotated binary relationship be-
tween configurations.

Definition 3.4 Given a TLChart transition (b’,c’)
a’ we say it is a member

TLChart-transition of a global transition (b,c)a if b’⊆ b, c’⊆ c, and a’⊆ a.

Given a global transition t=(b, c)a we denote its set of member TLChart
transitions as m(t). For example, in Fig. 1, t= ({OPN, State-3}, {CLS,
State-4}{doorClosed,end}is a global transition, where OPN→doorClosed CLS and
State-3→end State-4 are two members of t.

Definition 3.5 Let (b′, c′)a′ be a member transition of some transition (b, c)a,
then every state in b′ (c′) is said to be a source (target) state in b (c), and we
denote the set of all source (target) states for (b, c)a as the source (target) set
of (b, c)a.

Note that member TLChart transitions of a global transition t=(b, c)a are
always non-conflicting otherwise c would not be a valid configuration.

Definition 3.6 A global transition t1=(b, c)a is maximal if (i) b and c are
maximal configurations, and (ii) no other global transition t2=(b, e)a exists
such that m(t1) ⊂ m(t2).

Intuitively, t1 pairs maximal configurations b and c by firing a maximal
set of non-conflicting TLChart transitions that are enabled in configuration
b using the inputs symbols in a. For example, in Fig. 1, ({OPN, Wait-For-
KeyPressed, State-3}, {CLS, Wait-For-KeyPressed, State-4}{doorClosed,end} is a
maximal transition but ({OPN, Wait-For-KeyPressed, State-3}, {CLS, Wait-
For-KeyPressed, State-3}{doorClosed,end}is not maximal because it did not fire
the enabled TLChart transition State-3→end State-4.

ENFA transitions extend maximal transitions in that they might affect
states in an indirect way, i.e., without those states being source or target
states of any member transition. To this end, we need a few more definitions.

Recall that a statechart (are therefore a TLChart) default state is a des-
ignated initial state within a particular level of nesting. Hence, we define the
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following.

Definition 3.7 A state d is default under state s if d is a descendant of sin
the state tree, d is a default state, and all ancestors of d under s are default
states. A state d is a default state under a configuration C if d is a default
state under the least common ancestor (lca) of the elements of C in the state
tree.

In Fig. 2 for example, state Closed is default under state Door Thread,
but not default under the TLChart root. Finally, we define ENFA transitions.

Definition 3.8 Let t=(b, c)a be a maximal transition and let b′, c′ be the
source and target sets of t, respectively. t is a legal ENFA transition if for
every state s ∈ c− c′ (i.e., s is in c but is not an explicit target state of some
member transition), s is a default state under c or else s ∈ b − b′ (i.e., s was
not affected by the transition).

For example in Fig. 1, the maximal transition ({Init}, {CLS, For-KeyPressed,
State-3}{begin} is an ENFA transition where the least common ancestor of con-
figuration {CLS, Wait-For-KeyPressed, State-3} is state State-1, and CLS,
For-KeyPressed, and State-3 are all defaults under State-1.

Note that conflicting simultaneously enabled ENFA transitions induce non-
determinism. This is the case in the TLChart of Fig. 2 when keyPressed,
doorOpen, and alarm are all true while in configuration {Closed, Wait-For-
KeyPressed} enabling two ENFA transitions, one resulting in configuration
{Open, Wait-For-KeyPressed}while the other results in configuration {Error}.

3.3 Semantics with Temporal Conditions

While standard semantics for LTL are defined using infinite models, in this
paper our primarily interest is with finite linear model semantics. Hence, for
example, Eventually ρ is satisfied if there exists state s in the finite linear
model that satisfies ρ.

An LTL model relates to an automatons input tape in the following straight-
forward way. An LTL model consists of a finite sequence of states with Boolean
propositions and corresponding truth assignments assigned to each state. For
example, consider a model with two states (i.e., two cycles), where {begin,
¬end, KeyPressed, ¬alarm, doorOpen} is the truth assignment for state 0 (in-
terpreted as cycle 0), and {¬begin, ¬end, KeyPressed, ¬alarm, doorClosed}
is the truth assignment for state 1. This model is therefore obviously ex-
changeable with an automaton input tape with the symbol<begin, ¬end, Key-
Pressed, ¬alarm, doorOpen> in position 0 and <¬begin, ¬end, KeyPressed,
¬alarm, doorClosed> in position 1. In other words, each Boolean proposition
pi and its negation ¬pi form an alphabet Σi. The input alphabet Σ for the
ENFA is then the Cartesian product of all Σi alphabets.

We now incorporate temporal conditions into ENFA behavior. First, note
that every ENFA transition has a pair of propositional and temporal condi-
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tions, which are the respective conjunctions of all propositional and temporal
conditions annotating its member TLChart transitions. Hence we represent an
ENFA transition as an annotated binary relation (b, c)a,ρ where a is a propo-
sitional condition and ρ is a temporal condition. Temporal conditions affect
ENFA behavior via the definition of a computation. Given an input tape,
a conventional one-way non-deterministic Finite Automaton (NFA) computa-
tion is essentially a sequence of consecutive transitions and corresponding tape
head moves to the right; details are available in [HU]. ENFA’s extend this well
known definition by requiring that for every transition ti in the computation
the input tape is observed from position i into the future and back to the past,
but without moving the tape head. The transition ti is then enabled only if the
temporal condition is satisfied by the tape, while considering position number
i as cycle 0.

Definition 3.9 Let σ = σ1.σ2...σn be an input tape and let C = c0.c1. . . cnbe
an ENFA computation. C is a computation on σ if c0 is an initial configuration
and ∀i, 0< i ≤ n,the ENFA contains a transition (ci−1,ci)a,ρsuch that a ⊆
σi,and σ,i |=ρ using standard LTL and MTL semantics (e.g., [CPM]).

For example, using the entry system TLChart of Fig. 2, consider the input
tape (using straightforward abbreviations of the entry system conditions):
σ = σ1.σ2.σ3.σ4.σ5.σ6=

{B,¬E,KP,¬A,DC}.{¬B,¬E,¬KP,¬A,DC}.

{¬B,¬E,KP,¬A,DO}.{¬B,¬E,KP,A,DC}.

{¬B,E,¬KP,¬A,DC}.{B,¬E,¬KP,¬A,DO}.

The following C1computation is enabled by σ; each line is considered as a
cycle, starting at cycle 0:

{Init}→B

{Wait-For-KeyPressed, Closed}→(none)

{Wait-For-KeyPressed, Closed}→KP,DO

{Wait-For-KeyPressed, Open}→A

{Error} (a sink state)

Similarly, the following C2computation is also enabled by σ:

{Init}→B

{Wait-For-KeyPressed, Closed}→(none)

{Wait-For-KeyPressed, Closed}→KP,DO

{Wait-For-KeyPressed, Open}→KP,DC

{Wait-For-KeyPressed, Closed}→ρ{Done}

where ρ is the temporal condition E U B. ρ is enabled on cycle 4
because the input tape then points to σ5 and the tape suffix is σ5.σ6=

{¬B, E,¬KP,¬A,DC}.{B,¬E,¬KP,¬A,DO} which satisfies ρ.

Like their logical counterpart, ENFAs represent assertions about a system.
They do so using a formal language mechanism, namely by accepting or re-
jecting strings (tapes). A classical NFA accepts a string using an existential
criterion, namely, if a computation ending in a final state exists. A dual uni-
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versal automaton (∀-FA) accepts a string if all computations end in a final
state. Combining both acceptance criteria results in an alternating automa-
ton. Alternatively, an existential NFA with negation can be used instead of
a combination of both acceptance criteria. ENFA supports negation using (i)
negation inside temporal conditions, (ii) a combination of good (accepting)
and error (rejecting) states. For a given input string san ENFA has one or
more possible computations on s, some of which end in a good state while
others end in an error state. Conflicts are resolved using a priority scheme
where the winning computation is the computation whose last visited state
configuration contains a TLChart state St whose priority is higher than all
other TLChart states in all competing configurations. If St is a good state
then the TLChart accepts the input string otherwise the TLChart rejects it.
For example, in Fig. 2 consider two computations on the input string σ de-
scribed earlier, C1and C2.C1 ends in the configuration {Error} where the error
state Error has priority 2. C2ends in the configuration {Done} where good
state Done has priority 1. We use the engineering convention where lower
integer values represent higher priorities; hence, σ is accepted because Done
has a higher priority than Error.

Whenever the priority scheme cannot resolve conflicts we arbitrarily select
the error computation as overriding. Likewise, whenever a single computation
ends in a configuration that contains both good and error states, then we
arbitrarily select the error state as overriding.

TLCharts support methods for real-time constraint specification. The first
method uses Harel statechart timeout (tm) events, not unlike the mechanism
used by timed automata. The second method uses MTL; consider a variant
of Fig. 2 where the pair of transitions Wait-For-KeyPressed→tm(2min)Alarm-
Necessary, and Wait-For-KeyPressed→keyPressed Wait-For-KeyPressed are re-
placed with a single transition Wait-For-KeyPressed→ρAlarm-Necessary,
where ρ = ¬♦≤2min keyPressed. Though similar, the two approaches differ
with respect to the timing in which state Alarm-Necessary is reached. With
the first representation Alarm-Necessary is reached after two minutes, while
under second representation the transition is traversed after one cycle. In this
context, we suggest a special visual delay construct, represented with thick
edges, which can only be used with the following unnested temporal condi-
tions: 2≤dρ (2ρ with an MTL upper bound d), ♦ρ, and ρUψ. It means
that the transition is traversed only when the temporal condition becomes
true, i.e., when the MTL upper bound d in for 2≤dρ is reached, or when ψ

is true in ♦ψ or ρUψ. Hence, in Fig. 2, the transition Done→alarmError
is enabled only after the final keyPressed input that satisfies the preceding
transitions’ temporal condition (alarm U keyPressed) is detected. A thick
transition A →ρUψ Bis formally but a shorthand representation of a pair of
thin transitions A→ρUOψ A

′andA′ →ψ B,where A’ is a new sibling of A in the
state tree. A similar approach is used for the other types of thick transitions.

From a semantic perspective, real-time measurements, used by statechart
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timeout events and MTL constraints, are represented in our ENFA model
using a standard monotonically increasing positive integer function that maps
each tape cell with a real-time value.

Note that though visually similar to Harel Statecharts, TLCharts are actu-
ally used and applied more like a temporal logic specification in the following
sense. TLCharts do not describe the token by token reaction of a reactive
system to environment stimuli. Rather, TLCharts consider a complete input
string s, which combines both environment inputs s in and system outputs
s out ; a TLChart asserts about the legality of an s out system response to the
s in stimuli.

4 TLCharts with Overlapping States.

The proposed automata theoretic statechart semantics described in Section 3
caters for statecharts with overlapping states [Ka]. Consider the TLChart of
Fig. 4, a variant of the TLChart of Fig. 3 but with overlapping states. In
Fig. 4, state State-OVLP is an and state that shares its substates with the
concurrent threads of state State-2. Fig. 4 induces the DAG state graph of
Fig. 5. The intuitive meaning of the state overlap in Fig. 4 is that it is illegal
for a key to be pressed while the valve is open.

From a semantics perspective, ENFA state configurations for TLCharts
with overlapping states contain all state nesting information. Hence, the
situation where State-KP and Open are simultaneously visited has two dis-
tinct possible representations as ENFA state configurations: {State-1, State-2,
State-KP, Open}, and {State-1, State-OVLP, State-KP, Open}. Therefore,
the following two computations are distinct, though when considering only
leaf states the cycle #1 configurations look alike:

{Init}→B

{State-1, State-2, Wait-For-KeyPressed, Closed}→KP,DO

{State-1, State-2, State-KP, Open}→DC

{State-1, State-2, State-KP, Closed }

and

{Init}→B

{State-1, State-2, Wait-For-KeyPressed, Closed}→KP,DO

{State-1, State-OVLP , State-KP, Open}→(any)

{Error}

Given that the second computation ends in Error, a state with higher
priority than any of the states in {State-1, State-2, State-KP, Closed}, the
TLChart rejects the input, effectively stating that State-KP and Open cannot
be visited simultaneously.

Fig. 4 contains another instance of state overlapping, where two or states
overlap, namely NoAlarm and State-1. Hence, when state Wait-For-KeyPressed
is visited, it can be considered as residing under state NoAlarm or under state
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Fig. 4. A TLChart with overlapping states.

Fig. 5. State and/or DAG for the TLChart of Fig. 4.

State-1, each case resulting in a different configuration. Therefore, the follow-
ing two computations are possible:

{Init}→B

{State-1, State-2, Wait-For-KeyPressed, Closed}→alarm
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{State-1, State-2, Wait-For-KeyPressed, Closed}

and

{Init}→B

{NoAlarm, Wait-For-KeyPressed}→alarm

{Error}

The formal semantics described earlier is extended to support TLCharts
with overlapping states in the following way. Given a TLChart T with over-
lapping states, we say that T’s state DAG contains the tree Tr, if Tr is a
spanning tree in T and is a legal state-tree. Using the existing semantics of
Section 3, every state-tree ST i contained in the state DAG induces an ENFA,
which in turn induces a set Si of possible, competing, computations; the final
outcome of these competing computations is then determined using a priority
scheme. The new extended semantics defines the DAG computation set SDAG
as the union of allSi sets, and the final outcome is then determined using the
priority scheme applied to all computations in SDAG.

5 Armor Plating Specifications

Run time assertion checking is a common method for armor-plating programs
against unexpected errors. Recently, in [D4], armor plating method using
run-time monitoring of LTL and MTL assertions combined with exception
handling was suggested.

TLCharts offer an opportunity for armor-plating specifications using over-
specification, namely by adding temporal conditions to an otherwise fully spec-
ified TLChart or statechart. Consider for example requirement R and the
corresponding TLChart of Fig. 2. A correctness property ϕ of interest, ex-
pressed in MTL, is that in state Wait-For-KeyPressed : (¬♦≤120 keyPressed)
=> ♦[120,130] (alarm U (keyPressed ∧ 2¬alarm). Therefore, Fig. 2 and 4
can be armor-plated with a transition Wait-For-KeyPressed→¬ϕError. This
transition overlaps at least two other transitions: (i) it can, with the appropri-
ate conditions, fire together with Wait-For-KeyPressed→ Alarm-Necessary →
Error, or (ii) it can, with the appropriate conditions, fire together with Wait-
For-KeyPressed→ Alarm-Necessary → Done→ Error. The purpose of over-
specification is therefore to provide additional assurance that a specific re-
quirement is satisfied.

A different flavor of armor plating involves the addition of temporal con-
ditions as guards to propositional conditions. Such armor plating is useful
when designing an implementation statechart, where is can be used for addi-
tional safeguards assuring that the specification is conformed to. For exam-
ple, the developer of the statechart of Fig. 1 can armor-plate the transition
Alarm→keyPressedDone with the temporal guard ¬♦alarm resulting in the
transition Alarm→keyPressed∧¬♦alarmDone. By doing so the developer has car-
ried a specification requirement into the design level representation all while
using a single coherent formalism.
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6 Runtime Monitoring of TLChart Specifications

Our runtime monitoring method for TLCharts (with no state overlapping)
combines a particular statechart code generation technique with an existing
MTL monitoring tool described in [D2, D5]. A corresponding product named
the StateRover is currently under development by Time Rover, Inc.

The particular statechart Code Generation (CG) algorithm we use is a
derivative of a hardware synthesis technique for Harel statecharts described
in [D6]. This synthesis technique generates a hardware Programmable Logic
Array (PLA) representation of the control logic for a hardware controller im-
plementation of a statechart. A PLA is a two-level sum-of-products Boolean
logic device. The PLA implements the logic responsible for configuration
changes. Configurations are stored in a state-register. In programming terms
each PLA product term corresponds to an if statement in a conventional pro-
gramming language, while the hardware state register corresponds data store
for the Present Configuration (PC). Hence, the entire statechart is represented
as a collection of if statements, one per transition in the original statechart,
each changing certain states within the PC. We denote each such if -statement
as an if-block. An if-block for the Fig. 1 transition {State-4, CLS}→{Init}
is:

if ((PC[1]==STATE4) && (PC[3]=CLS) && begin)) { // guard

PC[0]=INIT; PC[1]=0; // assignment of next PC

PC[2]=0; PC[3]=0;

}

An if-block consists of a guard condition and an assignment of elements
of the next PC.

TLChart monitoring is performed using CG. The TLChart CG method is
a variation of the statechart CG method described earlier with the following
modifications:

(i) Instead of a single PC data store, the generated code contains a plural-
ity of potential PC data stores; this plurality of PC stores implements
non-deterministic behavior, where each PC store stores the present state
within a single computation.

(ii) If-blocks might contain temporal conditions within their guards.

(iii) Each PC store is marked with a tag using one of four values representing
the Cartesian product of a logical value (good/error) and a Boolean final-
ity value (steady/transient). A PC store also contains a simple counter.
The logical value of the PC is error if any state of the PC is an error
state, or else it is marked as good.

The PC finality marking represents the status of a computation with respect
to temporal conditions under evaluation. The PC finality marking provides
information about the possibility that the PC logical value might change in
the future. For example, consider a computation . . .→ {Alarm-Necessary}
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→alarmUkeyPressed{Done} →alarm{Error} in Fig. 2. If a PC is {Error} then its
logical value is error, but if the finality marking is transient it means that the
computation has a potential of not reaching the Error state, where the actual
outcome depends on the on-going evaluation of a temporal condition such as
alarmU keyPressed.

Monitoring begins with a set of assigned PC stores, one per initial configu-
ration, all marked as good and steady and having their counters reset to zero.
For each configuration PC, a PC change cycle consists of firing all if-blocks,
resulting in a change of PC. Hence, a new PC set is induced by the current
PC set and the current input symbols.

Within a single PC change cycle, the PC holds its value, tag, and counter
as generated by the previous change cycle for that PC. Then, each if-block
contributes to a change in the PC in the following way. For an if-block that
contains only propositional conditions: PC’s counter and tag are not affected.
Such an if-block affects the PC contents in an obvious way only if it guard suc-
ceeds. For example, for the TLChart of Fig. 2, let PC={Wait-For-KeyPressed,
Closed}, then after receiving the input stimuli doorOpen the PC changes to
PC={Wait-For-KeyPressed, Open}.

Now consider an if-block for a TLChart transition with a temporal condi-
tion, such as the transition {Alarm-Necessary}→{Done} of Fig. 2; the guard
for this if-block contains the temporal condition ρ = alarm U keyPressed.
When the guard executes, it increments the PC’s counter and invokes a code
snippet for ρ that is generated by a temporal logic code generator such as the
Temporal Rover [D5]. The temporal logic related code executes every cycle
and results in one of four values, which combine a Boolean logic (success/fail)
result with a Boolean finality (done/not-done) result describing whether the
current logical result can change in the future [D5]. Hence, results from the
code snippet for ρ affect the PC in question in one of four possible ways:

(i) If the code snippet for ρ results in a fail-done pair then the PC in question
is not valid anymore and is removed from the set of possible PC’s.

(ii) If the code snippet for ρ results in a success-done pair then the counter
for the PC in question is decremented, and the code snippet dies (it will
not execute in a future cycle).

(iii) If the code snippet for ρ results in a fail-not-done or success-not-done
pair then the PC’s finality marking is marked as transient.

The PC counter for a particular PC store S counts the number of temporal
logic conditions within the computation for S that are still under evaluation.
Whenever S is zero it means that no temporal logic code condition within the
computation for S is alive; the PC’s finality marking is then marked as steady.
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7 Conclusion

Harel statecharts and LTL are well-researched and advocated specification
languages for reactive systems. Harel statecharts are widely popular through
their UML counterpart. LTL on the other hand, is advocated primarily by
the academia. While Harel statecharts are visual and deterministic, LTL is
textual, logical and non-deterministic. TLCharts combine both formalisms
thereby enabling specifications that are visual but also logical and non de-
terministic when needed. TLCharts have a straightforward formal automata
based semantics that supports a meaningful interpretation of statecharts with
state overlapping. With TLCharts, temporal conditions are anchored in states,
such as alarm U keyPressed being anchored in the state Alarm-Necessary in
Fig. 2. This eliminates the need to use deeply nested LTL, when using the
pure LTL alternative, or to provide a fully deterministic statechart, when us-
ing the Harel statechart alternative. We call this property just in time TL. In
addition, TLCharts enable specification armor plating.

Although this paper describes TLCharts as a hybrid of statecharts and
temporal logic, the notation can be extended to support regular expressions.
In fact, a tool currently under development by Time Rover, Inc., will sup-
port both temporal logic and regular expression conditions within TLChart
diagrams.

Clearly, TLCharts can be abused; a single state TLChart with highly
nested LTL and MTL conditions is a legal TLChart and so is a fully de-
terministic, implementation level detailed, Harel statechart. Further research
is needed to establish when each constituent capability of this new formalism
actually contributes a significant added value to the specification effort.

Separate research, done under the auspices of the Naval Postgraduate
School in Monterey, is investigating the application of TLCharts to the on-
going Battle Manager of the U.S. Missile Defense system.
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